Proceedings of the
5th International Seminar on
ORC Power Systems
9 - 11 September 2019, Athens Greece
Home Program Author Index Search

Design and First Operation of an Advanced ORC-CHP Architecture


Go-down orc2019 Tracking Number 27

Presentation:
Session: Session 3C: Experimental prototypes (2)
Room: Templar's
Session start: 16:00 Mon 09 Sep 2019

Sebastian Eyerer   sebastian.eyerer@tum.de
Affifliation: Technical University of Munich, Institute for Energy Systems

Fabian Dawo   fabian.dawo@tum.de
Affifliation: Technical University of Munich, Institute for Energy Systems

Maximilian Altnöder   altnoeder@swtts.de
Affifliation:

Roland Windhager   roland.windhager@tum.de
Affifliation:

Anne Niederdränk   anne.niederdraenk@tum.de
Affifliation:

Helge Esch   helge@hgesch.de
Affifliation:

Stefan Ausfelder   stefan.ausfelder@tum.de
Affifliation:

Robin Konrad   Robin-Konrad@live.de
Affifliation:

Michael Höger   hoeger@hotmail.de
Affifliation:

Christoph Wieland   wieland@tum.de
Affifliation: Technical University of Munich, Institute for Energy Systems

Hartmut Spliethoff   spliethoff@tum.de
Affifliation: Technical University of Munich, Institute for Energy Systems


Topics: - System Design and Optimization (Topics), - Experimental activities and techniques (Topics), - Volumetric expanders (Topics), - Advanced Control Strategies (Topics), - Operational Experience on Prototypes (Topics), - Novel/advanced architectures (mixtures, (Topics), - Oral Presentation (Preferred Presentation type)

Abstract:

Over the last years, the optimization of the Organic Rankine Cycle technology has been enforced. There are several approaches to increase the efficiency of ORC plants, including the ORC plant design, the working fluid selection, the part-load optimization together with combined heat and power (CHP) generation, as well as the optimization of the plant components. In order to contribute to these optimization measures, the design and first operation of an advanced ORC-CHP plant architecture optimized for geothermal applications, is presented in this study. This architecture extends the state of the art ORC by a two-stage expander with turbine bleeding and a regenerative direct contact preheater. The aim of this architecture is to increase the utilization of the heat source, the flexibility and the part-load efficiency of the plant. In order to evaluate the performance of this ORC-CHP concept, a test rig has been constructed. The test rig is heated with a 200 kW electrical resistance heater, which is controlled by pulse width modulation. As expander, a twin screw compressor is used, which operates in reverse mode and R1233zd(E) is applied as working fluid. Besides an in-depth description of the test rig, the system is analyzed in its complete operational range. Therefore, experiments are conducted with varying heat loads of the district heating network. With this, an operation strategy of the ORC system for the full operational range is derived.