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ABSTRACT

Recovering waste heat from the exhaust gas of heavy-duty diesel trucks using a bottoming organic Ran-
kine cycle (ORC) is a promising option to reduce fuel consumption. In contrast to most other applications
of ORCs, e.g., geothermal or solar-thermal, the heat source in automotive applications is subject to strong
fluctuations with limited predictability. Consequently, controlling the ORC system to maintain safe and
efficient operation is a challenging task. Nonlinear model predictive control (NMPC) has been proposed
for ORC systems and showed promising in silico results. It suffers, however, from a high computational
expense and real-time capable implementation on vehicle hardware is questionable. Several methods are
available that aim at shifting the majority of the computational load to the design phase of the controller,
reducing on-line resource demand. In this work, we apply artificial neural networks (ANN) in silico
to learn the control law of the NMPC controller off-line. We obtain training data from various NMPC
scenarios with different initial conditions and heat source conditions using our in-house dynamic opti-
mization tool DyOS. Subsequently, we apply the ANN-based controller in silico to different scenarios
of transient heat source conditions. We compare the results to the NMPC solution obtained with DyOS
and findings indicate that performance loss associated with the ANN-based controller is marginal while
the control policy can be obtained at negligible computational cost.

1. INTRODUCTION

Control of organic Rankine cycle (ORC) systems for waste heat recovery in heavy-duty diesel trucks
is a challenging task as the vehicles are operated in street traffic, and hence, the heat source fluctuates
strongly. Moreover, predictability of these fluctuations is limited. To maintain efficient and safe ope-
ration under those conditions, several authors have proposed model predictive control (MPC) schemes
ranging from linear tracking MPC, e.g., (Feru et al., 2014), to (economic) nonlinear MPC, e.g., (Petr
et al., 2015, Peralez et al., 2015). Nonlinear MPC in particular promises good disturbance rejection, yet
it is computationally expensive. Albeit CPU times of less than 100 ms for solving an NMPC problem
for WHR in a truck have recently been reported on a desktop computer (Guerrero Merino, 2018), imple-
mentation on in-vehicle hardware remains questionable. Most authors try to reduce model complexity
to maintain computational tractability (Petr et al., 2015, Peralez et al., 2015).

Several ideas to reduce the computational costs of NMPC are available. Bemporad et al. (2002) pro-
posed to exploit that the solution of MPC is parametric in the systems state variables and to solve the

5TH International Seminar on ORC Power Systems, September 9-11, 2019, Athens, Greece



Paper ID: 076, Page 2

parametric problem a priori. While the approach exhibits strong theoretical foundations in terms of its
stability properties, solving the parametric problem scales badly for increasing state vector size. Another
method, which has been revisited recently, is to learn the NMPC control policy using machine learning
techniques e.g., (Åkesson and Toivonen, 2006), (Lucia and Karg, 2018), (Lucia et al., 2018), (Karg and
Lucia, 2018), (Lovelett et al., 2018). The approach is straightforward to implement, however, it suffers
from the typical weaknesses of machine learning approaches, i.e., the course of dimensionality and little
or no extrapolation capability.

Hence, it is of great significance to obtain a dense sampling of the state space and to ensure that the
controller does not operate outside the sampled region. Lucia and Karg (2018) showed that in practice
an ANN-based controller might exhibit some extrapolation capabilities. Lovelett et al. (2018) proposed
to combine an ANN-based controller with manifold learning techniques to achieve a simpler correlation
to learn, especially for large-scale systems. In this manuscript we apply an ANN-based controller to an
ORC waste heat recovery system for a heavy-duty diesel truck. Our focus is on maintaining a desired
superheat set-point.

The remainder of this manuscript is structured as follows. We present the system considered and its
model in Sec. 2. The method for gathering the training data and the training procedure are described in
Sec. 3 followed by an evaluation of the controller performance in Sec. 4. We give our conclusions and
provide an outlook on future research in Sec. 5.

2. MODEL DESCRIPTION

We consider an ORC for waste heat recovery in a heavy-duty diesel truck (cf. Fig. 1.) The working
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Figure 1: Topology of the examined system. TheWF is indicated by the solid green line and the exhaust
gas by the dashed gray line. The manipulated variable is indicated by the arrow and the disturbances by
the circle. The system boundary for this work is indicated by the dot-dashed black line.

fluid (WF) ethanol is compressed in a pump (4→1) and then preheated, evaporated and superheated in a
single heat exchanger (1→2). The superheated WF is expanded in a turbine (2→3) and then condensed
in a condenser (3→4).

We focus on maintaining a desired superheat set-point at the heat exchanger WF outlet. For simpli-
city, we assume that the condenser operates at ambient pressure and is adequately controlled to cool the
WF to fixed subcooling which renders a sophisticated condenser model unnecessary. Under this assump-
tion, the turbine speed solely serves for optimizing power output. Hence, we did not implement a turbine
or condenser model and the WF inlet massflow ṁWF,in is the sole degree of freedom. The evaporator
is represented by a dynamic model using the moving boundary approach and the pump by a pseudo-
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stationary model as suggested in Huster et al. (2018). However, for simplicity we assume constant heat
transfer coefficients and a simple geometry typical for waste heat recovery in a truck. Key parameters
for the model are specified in Tab.1. We assume that the WF leaving the evaporator is always in super-

αi,0 αi,1 αi,2 αexh A Aw ALaval bWF bexh ltot
W/ (m2K) m2 m

100 900 50 45 0.004 0.03 0.00002 12 80 0.3

Table 1: Key heat exchange and geometry model parameters.

heated state so that no discrete events occur which would complicate the use of dynamic optimization
for NMPC (Vaupel et al., 2019).

3. METHOD: DATA ACQUISITION AND TRAINING

To learn the NMPC control law, it is of great significance to provide a set of data for training which
adequately samples the state space. Recent efforts on ANN-based MPC, e.g., (Lucia and Karg, 2018),
(Lovelett et al., 2018), present chemical reactions in stirred tank reactors as a case study. Sampling the
state space by providing a set of practically relevant initial conditions is straightforward for such systems
and can be achieved by simply altering initial concentrations and reactor volume.

In contrast, it is complicated to provide a variety of physically meaningful initial conditions for the ORC
system, in particular for wall temperatures and zone lengths. For example, it would make little sense to
initialize the wall temperature of the superheated zone at a smaller value than the wall temperature of the
subcooled zone. Such an initialization might even result in an infeasible DAE initialization or integration
failure. We use an optimization-based procedure to address this issue. We solve 200 dynamic optimiza-
tion problems using our in-house tool DyOS (Caspari et al., 2019), each starting from the same feasible
initial point but with a different time-invariant exhaust gas massflow ṁexh. The optimizer minimizes the
deviation of the superheat Tsup at final time tf from a desired superheat Tdessup, which is different in each
run, thus achieving a set of well distributed initial points. As a degree of freedom, the optimizer can
choose ṁWF,in which is constant for each run. Thereby, and by choosing tf = 2000 s we achieve that the
system is effectively at steady-state at tf. We provide 200 combinations of ṁexh ∈ [0.1 kg/s,0.6 kg/s] and
a desired superheat Tdessup ∈ [10 K,50 K] through latin hypercube sampling (LHS) and assume a constant
exhaust gas inlet temperature of Texh,in = 600 K. The dynamic optimization problem reads

min
u,x(t)

(Tsup (tf) − T des,k
sup )

2
(1)

s. t. Mẋ (t) = f (x (t) , y (t) ,u,d) (2)
y (t) = g (x (t) , y (t) ,u,d) (3)
x (t = 0) = x0 (4)
umin ≤ u ≤ umax . (5)

where (1) is a Mayer-type objective function that minimizes deviation of the superheat Tsup from Tdessup
at final time tf. The model is described by the differential and and algebraic equations (2)-(3) where
M is the constant mass matrix of the DAE-system, x the differential state variables, y the algebraic state
variables, u the time-invariant input and d the time-invariant disturbance, i.e., ṁexh and Texh,in. The initial
state of the model is specified in (4) and the problem is input-constrained with (5).

We use the resulting steady-state optimal state vectors xopt,k (dk) as initial values for the following NMPC
runs and combine them with a different LHS of ṁexh. We then carry out NMPC with these sets, mini-
mizing the devations of the superheat trajectory from desired superheat of 30 K. The NMPC problem
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is solved repeatedly with a sampling time of Δt = 5 s, i.e., at every instant k and minimizes the integral
over the prediction horizon NP of the deviation from desired superheat.

min
u(t),x(t)

∫
tk+NPΔt

tk
(Tsup (t) − 30 K)

2 dt (6)

s. t. Mẋ (t) = f (x (t) , y (t) ,u (t) ,d) (7)
y (t) = g (x (t) , y (t) ,u (t) ,d) (8)
x (t = tk) = x0 (9)
umin ≤ u (t) ≤ umax (10)

Here, we chose a piecewise-constant discretization of the inputs u (t). We chose a control horizonNC = 8
and a prediction horizon NP = 10. The dynamic optimization problem was solved with DyOS at every
sampling instant and the total duration of each run was 200 s, resulting in 40 samples per simulation.

A projection of the trajectories in the state space on pressure p and WF outlet enthalpy hout of all 200
NMPC simulations is depicted in Fig. 2. We can see that we achieve a dense sampling in the state-
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Figure 2: State space projection on p and hout of the 200 NMPC simulations. Crosses indicate initial
values. The controllers regulates the system to achieve the desired superheat.

space and that the trajectories converge to the desired superheat. The data is used for training the ANN
and the amount of data is considered to be sufficiently dense to allow for effective interpolation. In
total, we obtained the datasets u∗ ∈ R8000×1, x∗ ∈ R8000×7 and d∗ ∈ R8000×1. The solution to the
NMPC problem for our scenario is parametric in x and d. Consequently, we learn the mapping from
those quantities to the optimal control policy u. The NMPC controller provides the optimal sequence
uk ∶= (u (tk) ,u (tk + Δt) , . . . ,u (tk + (Nc − 1)Δt)) over the control horizon consisting of NC elements at
every instance. However, as only the first calculated input of this sequence is applied to the plant before
the NMPC problem is resolved, we only learn the mapping for this quantity. The training process is
illustrated in Fig. 3. We did not include Tsup as an input to the ANN as it is fixed to 30 K. We trained
the ANNs using the Levenberg-Marquardt algorithm in Matlab’s Neural Network Toolbox (Beale et al.,
2010) and assumed all states to be measurable, thus eliminating the need to implement state estimation.
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NMPC

s:t: _x = f (x; y; u; d)
y = g (x; y; u; d)

ANN

min
R tk+NP∆t

t0=tk
(T (t)

sup
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2
dt
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−

Figure 3: Illustration of the training process of the ANN. Only the first control input u (tk) is considered.

Due to the parametric nature, the mapping is only dependent on the measured state and disturbance
at the current time. Hence, we used a feed-forward neural network with the hyperbolic tangent activa-
tion function. We tested several different ANN architectures by varying the number of hidden layers and
the number of neurons per layer. In total we tested architectures consisting of one to four hidden layers
consisting of 10, 20 and 30 neurons each. To obtain reliable results, we executed five training runs for
each architecture.
We found that all trained ANNs achieved good results, differences in performance were small and even
a shallow network with only one hidden layer consisting of ten neurons exhibited satisfactory perfor-
mance. While this is an interesting observation, we do not claim that it is generally true for learning
NMPC policies as we solved a rather simple problem with only one manipulated variable here.

4. CASE STUDY: ANN-BASED CONTROLLER VS. NMPC

We test our proposed ANN-based controller in further scenarios in silico. To assess its performance, we
compare the resulting control policy and deviations from desired superheat to the solution obtained by
solving (6)-(10). We used an ANN consisting of two hidden layers of 20 neurons each and we examined
a total of ten structurally similar scenarios. All scenarios include two steps in the exhaust gas mass flow
which, however, do occur at different times. To generate the different exhaust gas profiles, we sampled
a LHS with three values for the different levels of ṁexh and another LHS for the time-points where the
steps occur. We obtained initial values with the procedure described in Sec. 3. However, to test the
robustness of the ANN-based controller with respect to conditions not encountered during training, we
sampled Tdessup ∈ [10 K,60 K] and ṁexh ∈ [0.1 kg/s,0.65 kg/s].

We then solved these scenarios with the ANN-based controller and with NMPC and assumed that the
solution can be computed without time delay. To compare both approaches we use the average deviation
from the desired superheat εavg.

εavg =
∫
tf
0

√
(Tsup (t) − 30 K)

2dt
tf

(11)

Tab. 2 presents the values of εavg for all executed simulations. In general, both controllers perform well

εavg [K]

Run 1 2 3 4 5 6 7 8 9 10

ANN .109 .722 .447 .241 .996 .410 .847 .101 .280 .276
NMPC .096 .636 .431 .241 .848 .319 .809 .100 .271 .244

Table 2: Average deviation from desired superheat for all ten runs.
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in all scenarios with the average deviation always smaller than 1 K. However, NMPC exhibited slightly
better performance for each run. Higher average deviation in certain runs does not necessarily indicate
bad controller performance. In fact, it is predominantly due to deviations of the superheat from 30 K at
the initial point of the respective run. The average CPU time for obtaining the ANN-based control policy
was 20 ms on a desktop computer with an Intel(R) Core(TM) i7-4790 CPU and 16 GB RAM.

For further assessment, we examine the scenario with the highest relative deviation between the ANN-
based controller and NMPC controller, i.e., Run 6. The exhaust gas mass flow is provided in Fig. 4a.
Interestingly, it is a scenario where one of the exhaust gas mass flow levels is outside the training set.
This is in agreement with intuition as it can be expected that the loss in controller performance is larger
for disturbances outside the training set. As in all scenarios in this manuscript, Texh,in remains constant
at 600 K. Fig. 4c depicts the control action taken by the ANN-based controller and the NMPC controller.
The resulting superheat is shown in Fig. 4d. The control policy computed by the ANN is initially iden-
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Figure 4: Disturbances, controls and resulting superheat for Run 6.

tical to the sequence provided by NMPC. Both controllers react well to the change in ṁexh at t = 100 s
though the ANN-based controller takes marginally longer to reach the desired superheat. The second
step in ṁexh occurs at t = 190 s and reaches a level outside the training set. Though the ANN-based
controller is capable to reject this disturbance, the NMPC exhibits superior performance. The deviations
for the ANN-based Controller remain, however, sufficiently small.

5. CONCLUSION AND OUTLOOK

Nonlinear model predictive control of ORCs for waste heat recovery in vehicles is a challenging problem
due to the transient and unpredictable heat source conditions, the limited computational resources and
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necessary high sampling rates. NMPC has been proposed for this system by several authors but typically
requires significant model simplification. Large computational cost is a well known issue in many other
NMPC applications and several approaches to overcome it have been developed.

In this work, we presented a machine learning approach, where an ANN was used to learn the NMPC
control policy as function of the system state and the measured disturbance. To obtain data for training,
we solved to 200 NMPC simulations with varying initial conditions and exhaust gas mass flow. In those
cases, we aimed to track a superheat set-point of 30 K. We trained the ANN-based controller using shal-
low and deep ANNs consisting of up to four hidden layers and up to 30 neurons per layer. Differences in
performance were small and even the result for the smallest ANN with one hidden layer of ten neurons
showed satisfactory performance. We then performed a case study where we executed ten NMPC simu-
lations and compared the results to the ANN-based controller. Two steps of random height at random
time-points occurred in the exhaust gas mass flow during these simulations. Further we included initial
values and exhaust gas mass flows which were slightly outside of the training set. Our results show that
the control policy learned by the ANN exhibits only small deviations from the solution of NMPC while
requiring negligible computational expense. However, small deviations do occur, in particular when
the disturbance changes while the system is at desired superheat but not yet at steady-state. This might
improve when the training scenarios are modified.

The issue at large is that there might be a lack of confidence in the method as long as it solely relies
on machine learning techniques. Hence, future work should aim at combining machine learning with
NMPC to obtain a good compromise between computational tractability and rigorous results. The met-
hod used herein has the benefit of being able to provide control signals virtually without delay at the cost
of solving many problems a priori. However, these calculations have to be done again if for example the
sampling rate or control horizon is to be changed. Therefore, possibilities to make the method more flex-
ible with respect to the controller parameters and reduce the need for retraining should be explored. We
used many simplifying assumptions to present the method in this manuscript. Future work should test the
performance under more realistic assumptions, e.g., introducing measurement noise, plant-model mis-
match, state estimation and further degrees of freedom and disturbances. Finally, it is questionable how
the method works for large-scale problems. Lovelett et al. (2018) proposed a method to exploit the fact
that there might be a variable transformation which provides a more adequate space to sample the data.
This could for example be tested with an ORC model using a finite volume evaporator model.

NOMENCLATURE

Latin Subscript
d disturbance (-) 0 initial
h specific enthalpy (kJ/kg) avg average
ṁ mass flow (kg/s) exh exhaust gas
M mass matrix (-) f final
NC control horizon (-) in inlet
NP prediction horizon (-) k counter variable
T temperature (K) max maximal
t time (s) min minimal
u input variable (-) out outlet
x differential state variable (-) WF working fluid
y algebraic state variable (-)

Superscript
Greek des desired
ε temperature deviation (K) opt optimal
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