Design of an Experimental ORC Expander Setup Using Natural Working Fluids

Ángel Á. Pardiñas (angel.a.pardinas@ntnu.no), Marcin Pilarczyk, Roberto Agromayor and Lars O. Nord
NTNU - Norwegian University of Science and Technology, Department of Energy and Process Engineering, Trondheim, Norway

Motivation
Future restrictions on working fluids justify the need for further research on ORC expanders using natural fluids. There is a lack of experimental data in the open literature for this combination of expanders and natural working fluids. In response to this knowledge gap, NTNU has designed and is building EXPAND, an experimental setup to characterize expanders in the 25–100 kW power capacity using natural working fluids and their mixtures.

System requirements and concept (Figure 1)
- Steady state facility.
- Expander power output: 25 – 100 kW.
- Natural working fluids and their mixtures.
- Flexibility (pressure ratios, mass flow rates, working fluids).
- Low-to-medium temperature of waste heat source < 150 °C.
- 1 bar < operating pressure < 20 bar (absolute).
- Gas phase operation (↓ fluid charge, ↓ cooling/heating needs).

Working fluid selection
Suitable natural working fluids are those with P_{sat}-T curves falling within the rectangle defined by [15 °C, 150 °C] and [2 bar, 20 bar].

Isobutane as starting point.
Recuperator to reduce the cooling and heating capacities of the auxiliary loops.

Expander and compressors
Expander
- Setup for volumetric and dynamic expanders.
- 1st approach: single-stage, axial turbine (= 50 kW) by ENOGIA.
- Coupled to frequency converter.
 - Variable-speed operation.
 - Supply the power generated from the expander to the compressors, reducing the power need from the grid.

Compressors
- Turbocompressors are more compact, lighter and silent than volumetric machines. No oil separation challenge.
- Flexibility with turbocompressor arrangement:
 1. Low pressure lift - high mass flow rate mode.
 2. High pressure lift - low mass flow rate mode.

Conclusions
- EXPAND was designed to operate in the gas phase to reduce the heating and cooling duties as well as the charge of working fluid.
- The working fluid for the first experimental campaign is isobutane (R600a) because it allows for operation with a broad range of pressure ratios within the pressure constraints.
- The expander architecture for the first experimental campaign is a variable-speed, single-stage, axial turbine.