EXPERIMENTAL INVESTIGATION ON START-UP PERFORMANCE OF A 315 KW ORGANIC RANKINE CYCLE SYSTEM

Puyao Wang¹*, Zhe Wu¹, Long Chen¹, Qingyang Han¹, Zhiwei Yuan¹
¹Harbin Marine Boiler & Turbine Research Institute, Harbin 150078, China

Reported by: Wu Zhe
E-mail: 330249263@qq.com
Contents

1. INTRODUCTION
2. EXPERIMENTAL APPARATUS OF ORC SYSTEM
3. THERMODYNAMIC ANALYSIS
4. RESULTS AND DISCUSSIONS
5. CONCLUSIONS
1. Introduction

To explore a 315 kW ORC apparatus start-up method of matching R134a flux with heat source temperature.

An experimental apparatus was set up to measure and calculate the electrical power, turbine back pressure, heat exchangers pressure drop and exergy loss during the start-up process.

The ORC system operation mode and control strategy during the start-up process can be developed.
2.1 Description of the ORC apparatus

Low temperature waste heat: between 90 °C and 150 °C
Working fluid: R134a
ORC loop: generating electricity
Heating loop: simulating the waste heat
Cooling loop: condensing turbine outlet R134a gas

- Variable frequency pump
- Preheater
- Two evaporators
- Two condensers
- Radial-flow turbine
- Storage tank
- Tubes
- Valves and sensors
2.2 Control strategy and measurement

The measuring range and accuracy of the measuring equipment used in the experiment:

<table>
<thead>
<tr>
<th></th>
<th>Pressure Sensor</th>
<th>Temperature Sensor</th>
<th>R134a flowmeter</th>
<th>Water flowmeter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Range</td>
<td>0-2.5 MPa</td>
<td>0-100 °C</td>
<td>0.08-1.237 m³/min</td>
<td>0-10 m³/min</td>
</tr>
<tr>
<td>Accuracy</td>
<td>±0.25%</td>
<td>±0.25%</td>
<td>±0.963%</td>
<td>±1%</td>
</tr>
</tbody>
</table>
3.1 The main research parameters of this study

Electrical power: The power output from the frequency converter to the power grid, measured by the power analyzer.

Turbine back pressure: The turbine outlet pressure sensor to measure its value

Pressure drop of the heat exchanger: Pressure sensors at the inlet and outlet of evaporator and condenser
3.2 The formula for calculating

The formula for calculating the exergy loss:

\[I_{pp} = T_0 \cdot m \cdot (s_1 - s_6) \quad I_{ev} = T_0 \cdot m \left(s_3 - s_1 \cdot \frac{h_3 - h_1}{T^H} \right) \]

\[I_{tb&qv} = T_0 \cdot m \cdot (s_4 - s_3) \quad I_{cd} = T_0 \cdot m \left(s_5 - s_4 \cdot \frac{h_5 - h_4}{T_L} \right) \]

The total exergy loss of the system:

\[I_{sys} = I_{pp} + I_{ev} + I_{tb&qv} + I_{cd} \]

Exergy loss rate of each device:

\[i_j = \frac{I_j}{I_{sys}} \]

The net power generation efficiency:

\[\eta_{sys} = \frac{W_G - W_{pp}}{Q_{ev}} \]
4.1 System start-up process

The apparatus experimental condition

<table>
<thead>
<tr>
<th>Experimental condition</th>
<th>Test1 (1.30)</th>
<th>Test2 (2.18)</th>
<th>Test3 (3.21)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average temperature of cold source at condenser inlet(℃)</td>
<td>11.9</td>
<td>5.6</td>
<td>9.0</td>
</tr>
<tr>
<td>Average flux of cold source at condenser inlet(t/h)</td>
<td>365.6</td>
<td>333.2</td>
<td>391.1</td>
</tr>
<tr>
<td>Average flux of hot source at condenser inlet(t/h)</td>
<td>201.8</td>
<td>203.1</td>
<td>206.3</td>
</tr>
</tbody>
</table>
At the beginning, the temperature of heat source rises gradually, and when the frequency of working fluid pump increases, the motor starts to generate electricity. In this process, the working fluid pump aims to control the superheat at the evaporator outlet within a certain range, and adjusts with the change of heat source temperature.
4.2 Effect of cold source temperature

The apparatus experimental parameters at 315 kW

<table>
<thead>
<tr>
<th>Experimental parameters</th>
<th>Test1 (1.30)</th>
<th>Test2 (2.18)</th>
<th>Test3 (3.21)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature of cold source at condenser inlet(°C)</td>
<td>12.1</td>
<td>5.2</td>
<td>8.6</td>
</tr>
<tr>
<td>R134a flux(kg/s)</td>
<td>19.0</td>
<td>17.7</td>
<td>18.6</td>
</tr>
<tr>
<td>Frequency of working fluid pump(Hz)</td>
<td>50</td>
<td>48</td>
<td>49</td>
</tr>
<tr>
<td>System power consumption(kW)</td>
<td>45.0</td>
<td>39.8</td>
<td>42.4</td>
</tr>
<tr>
<td>Temperature of hot source at evaporator inlet(°C)</td>
<td>96.9</td>
<td>94.2</td>
<td>95.2</td>
</tr>
<tr>
<td>Net power generation efficiency(%)</td>
<td>6.3</td>
<td>6.5</td>
<td>6.2</td>
</tr>
</tbody>
</table>
4.2 Effect of cold source temperature

Temperature of the heat source \uparrow
Mass flow rate \uparrow
Cold source temperature \downarrow
Back pressure and electrical power \uparrow
Turbine back pressure \downarrow

The lowest temperature of the cold source = 5.2 °C.
The required working fluid flow rate = 17.7 kg/s. The net power generation efficiency = 6.5%
4.2 Effect of cold source temperature

Effect of cold source temperature on evaporator pressure drop

Effect of cold source temperature on condenser pressure drop

R134a flow rate: 1 kg/s ↑

Average flow velocity of working fluid: Evap > Cond

The layout of the evaporator

- Evaporator pressure drop: 4.9 kPa ↑
- Condenser pressure drop: 0.5 kPa ↑

Pressure loss
4.2 Effect of cold source temperature

Effect of R134a mass flow rate on exergy loss under the cold source temperature of 5.2 °C

R134a flux ↑
Exergy loss of each equipment ↑

The quickly closing valve uses a three-eccentric butterfly valve has a large pressure loss.
4.2 Effect of cold source temperature

Exergy loss of each equipment at 315 kW under the cold source temperature of 5.2 °C

<table>
<thead>
<tr>
<th></th>
<th>Evaporator</th>
<th>Turbine and quickly closing valve</th>
<th>Condenser</th>
<th>Pump</th>
<th>Total ORC system</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exergy loss (kW)</td>
<td>325.9</td>
<td>169.2</td>
<td>173.1</td>
<td>16.5</td>
<td>684.7</td>
</tr>
<tr>
<td>Exergy loss rate (%)</td>
<td>47.6</td>
<td>24.7</td>
<td>25.3</td>
<td>2.4</td>
<td>100</td>
</tr>
</tbody>
</table>

The evaporator exergy loss accounts for nearly 1/2 of the system exergy loss. The turbine, the quickly closing valve and the condenser each account for about ¼. The exergy loss of the evaporator occupying the largest part of the system exergy loss. The exergy loss of the working fluid pump occupies a small part of the system exergy loss.
5. CONCLUSIONS

- It is feasible to gradually increase the working fluid flow rate according to the change of heat source temperature during the start-up process.
- In the three tests introduced in this paper, the maximum net power generation efficiency is 6.5%.
- The evaporator exergy loss accounts for nearly half of the total in the tests during the start-up process.
- In the case of the same R134a flux, the pressure drop of the evaporator, condenser and the exergy loss of each device in the ORC system increase at the same time with the increase of cold source temperature.
REFERENCES

Thank You!

The End