Efficiency Correlations for Off-Design Performance Prediction of ORC Axial-Flow Turbines

Roberto Pili, M.Sc.

Christoph Wieland, Dr.-Ing.
Hartmut Spliethoff, Prof. Dr.-Ing.
Technical University of Munich
Department of Mechanical Engineering
Chair of Energy Systems

Roberto Agromayor, M.Sc.
Lars O. Nord, Ass. Prof.
NTNU – The Norwegian University of Science and Technology
Department of Energy and Process Engineering

Athens, 9th September 2019
Outline

1. Axial-Flow Turbines for ORC Power Systems
2. Design and Optimization of Axial-Flow Turbines
3. Turbine Design Tool: AxialOpt
4. Turbine Off-design Tool: AxialOff
5. Test cases
6. Results and Correlations
7. Summary and Future Outlook
1. Axial-Flow Turbines for ORC Power Systems

Expander:
- Thermo-mechanical conversion
- Crucial component for high efficiency

Classical design of ORC power systems:
→ Assumed constant, reasonable isentropic efficiency of turbine

Integrated ORC/expander design:
→ Both ORC and expander design in the same optimization loop or
→ Expander design characterized by correlations

Off-design prediction
→ Model-based or correlations
1. Axial-Flow Turbines for ORC Power Systems

Axial-flow turbines are the dominant type of expander for large-scale ORC units.
→ Efficient in broad range of application
→ Advantageous for high specific speed (increased number of stage)
2. Design of Axial-Flow Turbines

Integral ORC/turbine design:
→ mean-line models based on flow deviation and loss correlations
→ codes available:
 1) Axtur (Macchi and Perdichizzi, 1981)
 2) Turax (Meroni et al, 2016a)
 3) AxialOpt (Agromayor and Nord, 2019)

To reduce computational effort:
→ efficiency correlations developed by Astolfi and Macchi (2015) for one, two and three-stage turbines

Function of:
\[SP = \frac{\dot{V}_{out, is}}{\Delta h_{is}^{0.25}} \]
\[V_r = \frac{\dot{V}_{out, is}}{\dot{V}_{in}} \quad + \text{for optimal specific speed} \]

1) Objective function:
\[
\eta = \frac{h_{0,\text{in}} - h_{\text{out}}}{h_{0,\text{in}} - h_{\text{out},s} - \phi_E - \frac{v_{\text{out,a}}^2}{2}}
\]

2) Fixed input parameters:
 - working fluid
 - mass flow rate
 - stagnation temperature and pressure at inlet
 - static pressure at outlet

3) Constraints

4) Craig and Cox method, 1970

5) Optimization in MATLAB® with fmincon (SQP algorithm) and MultiStart

Figure 5: Axial-radial view of stator and rotor blades (Agromayor, 2019).
3. AxialOpt – Validation

Comparison with Axtur (Astolfi and Macchi, 2015)

<table>
<thead>
<tr>
<th>Working fluid →</th>
<th>R125</th>
<th>Hexane</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Axtur</td>
<td>AxialOpt</td>
</tr>
<tr>
<td>Inlet stag. temperature, °C</td>
<td>155.0</td>
<td>155.0</td>
</tr>
<tr>
<td>Inlet stag. pressure, bar</td>
<td>36.200</td>
<td>36.200</td>
</tr>
<tr>
<td>Outlet static pressure, kPa</td>
<td>15.685</td>
<td>15.685</td>
</tr>
<tr>
<td>Mass flow rate, kg/s</td>
<td>11.89</td>
<td>11.89</td>
</tr>
<tr>
<td>Volumetric ratio, -</td>
<td>2.293</td>
<td>2.312</td>
</tr>
<tr>
<td>Size parameter, m</td>
<td>0.036</td>
<td>0.036</td>
</tr>
<tr>
<td>Rotational speed, rpm</td>
<td>31 000</td>
<td>29 660</td>
</tr>
<tr>
<td>Mean diameter, m</td>
<td>0.086</td>
<td>0.086</td>
</tr>
<tr>
<td>Isentropic efficiency, %</td>
<td>87.2</td>
<td>87.1</td>
</tr>
</tbody>
</table>
4. AxialOff – Part-load Behaviour

1) Based on AxialOpt

2) Input parameters:
 - working fluid
 - stagnation temperature and pressure at inlet
 - static pressure at outlet
 - rotational speed

3) Geometry fixed

4) Constraint: mass flow rate <= critical mass flow rate (choking)

5) Solution in MATLAB® with fmincon (target zero, SQP algorithm)

Figure 6: Axial view of stator and rotor blades (Agromayor, 2019).
4. AxialOff – Validation

Figure 7: Validation against experimental data (single-stage) from Kofskey and Nusbaum (1972).
4. AxialOff – Validation

Figure 8: Validation against experimental data (two-stages) from Kofskey and Nusbaum (1972).
5. Test cases

<table>
<thead>
<tr>
<th>No.</th>
<th>Application</th>
<th>Working fluid</th>
<th>Stagnation inlet temperature, °C</th>
<th>Stagnation inlet pressure, bar</th>
<th>Static outlet pressure, bar</th>
<th>Mass flow rate, kg/s</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Biomass</td>
<td>MDM</td>
<td>305.00</td>
<td>7.92</td>
<td>0.22</td>
<td>5.46</td>
</tr>
<tr>
<td>2</td>
<td>Biomass</td>
<td>Toluene</td>
<td>292.02</td>
<td>21.90</td>
<td>0.41</td>
<td>13.69</td>
</tr>
<tr>
<td>3</td>
<td>Geothermal</td>
<td>R1234yf</td>
<td>128.50</td>
<td>42.57</td>
<td>8.44</td>
<td>190.73</td>
</tr>
<tr>
<td>4</td>
<td>WHR Cement</td>
<td>Pentane</td>
<td>162.00</td>
<td>19.40</td>
<td>1.03</td>
<td>16.67</td>
</tr>
<tr>
<td>5</td>
<td>WHR Ship</td>
<td>Benzene</td>
<td>225.34</td>
<td>19.66</td>
<td>0.16</td>
<td>3.06</td>
</tr>
<tr>
<td>6</td>
<td>WHR Steel</td>
<td>Toluene</td>
<td>290.85</td>
<td>5.21</td>
<td>0.15</td>
<td>11.74</td>
</tr>
<tr>
<td>7</td>
<td>n/a</td>
<td>R125</td>
<td>155.00</td>
<td>36.20</td>
<td>15.69</td>
<td>11.89</td>
</tr>
<tr>
<td>8</td>
<td>n/a</td>
<td>Hexane</td>
<td>155.10</td>
<td>8.29</td>
<td>0.25</td>
<td>2.04</td>
</tr>
</tbody>
</table>

Pressure ratios: 2-124
Isentropic power output: 250 kW-2.5 MW
Molecular mass: 72-237 kg/kmol
6. Results - Turbine Design

<table>
<thead>
<tr>
<th>No.</th>
<th>Working fluid</th>
<th>Isentr. volume ratio, -</th>
<th>Isentr. size parameter, m</th>
<th>Isentropic efficiency, %</th>
<th>AxialOpt</th>
<th>Axtur (diff, %)</th>
<th>AxialOff (diff, %)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>1</td>
<td>MDM</td>
<td>41.91</td>
<td>0.13</td>
<td></td>
<td>82.3</td>
<td>85.6</td>
<td>86.9</td>
</tr>
<tr>
<td>2</td>
<td>Toluene</td>
<td>58.74</td>
<td>0.18</td>
<td></td>
<td>84.7</td>
<td>86.3</td>
<td>87.5</td>
</tr>
<tr>
<td>3</td>
<td>R1234yf</td>
<td>6.14</td>
<td>0.16</td>
<td></td>
<td>88.4</td>
<td>78.4</td>
<td>79.1</td>
</tr>
<tr>
<td>4</td>
<td>Pentane</td>
<td>23.17</td>
<td>0.14</td>
<td></td>
<td>82.4</td>
<td>87.1</td>
<td>88.7</td>
</tr>
<tr>
<td>5</td>
<td>Benzene</td>
<td>112.15</td>
<td>0.12</td>
<td></td>
<td>76.3</td>
<td>87.7</td>
<td>88.3</td>
</tr>
<tr>
<td>6</td>
<td>Toluene</td>
<td>31.82</td>
<td>0.29</td>
<td></td>
<td>82.7</td>
<td>85.5</td>
<td>86.6</td>
</tr>
<tr>
<td>7</td>
<td>R125</td>
<td>2.29</td>
<td>0.04</td>
<td></td>
<td>87.1</td>
<td>87.7</td>
<td>88.3</td>
</tr>
<tr>
<td>8</td>
<td>Hexane</td>
<td>34.35</td>
<td>0.09</td>
<td></td>
<td>81.5</td>
<td>85.0</td>
<td>86.0</td>
</tr>
</tbody>
</table>

Pressure ratios:
2-124

Isentropic power output:
250 kW-2.5 MW

Molecular mass:
72-237 kg/kmol
6. Results - Part-load Correlations

Geometry designed with AxialOpt and part-load simulated with AxialOff

| Coefficients | Number of stages, -
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td>a</td>
<td>0.245</td>
</tr>
<tr>
<td>b</td>
<td>1.632</td>
</tr>
<tr>
<td>c</td>
<td>-1.940</td>
</tr>
<tr>
<td>d</td>
<td>0.033</td>
</tr>
<tr>
<td>e</td>
<td>-1.085</td>
</tr>
<tr>
<td>f</td>
<td>2.112</td>
</tr>
<tr>
<td>R^2</td>
<td>0.994</td>
</tr>
</tbody>
</table>

\[
\frac{\eta}{\eta_D} = a + b \left(\frac{\Delta h}{\Delta h_D} \right) + c \left(\frac{\Delta h}{\Delta h_D} \right)^2 + d \left(\frac{\dot{V}_{out}}{\dot{V}_{out_D}} \right) + e \left(\frac{\dot{V}_{out}}{\dot{V}_{out_D}} \right)^2 + f \left(\frac{\Delta h}{\Delta h_D} \right) \left(\frac{\dot{V}_{out}}{\dot{V}_{out_D}} \right)
\]
6. Results - Comparison

Comparison with turbine out of pool for correlation development

Turbine (Meroni, 2016)
Working fluid R245fa
Pressure ratio: 2.83
Size parameter: 0.082 m

<table>
<thead>
<tr>
<th>Turbine stages</th>
<th>Coefficient of determination, R^2 [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>96.6</td>
</tr>
<tr>
<td>2</td>
<td>90.0</td>
</tr>
<tr>
<td>3</td>
<td>94.9</td>
</tr>
</tbody>
</table>

Figure 9: Validation against additional turbine from Meroni (2016b).
7. Summary and Future Outlook

Summary
Two tools for design optimization (AxialOpt) and part-load prediction (AxialOff) of ORC axial-flow turbines based on mean-line method are presented.

The tools have been applied to design and study the part-load of turbines from several applications (broad range).

Correlations for the performance prediction of axial-flow turbines in part-load have been developed.

Future outlook
Further comparison with operational data.
References

Thank you very much for the attention.

Roberto Pili, M.Sc.
Chair of Energy Systems
Department of Mechanical Engineering
Technical University of Munich
roberto.pili@tum.de